Ramp: Fast Frequent Itemset Mining with Efficient Bit-Vector Projection Technique
نویسندگان
چکیده
Mining frequent itemset using bit-vector representation approach is very efficient for dense type datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. To check the efficiency of our bit-vector projection technique, we present a new frequent itemset mining algorithm Ramp (Real Algorithm for Mining Patterns) build upon our bit-vector projection technique. The performance of the Ramp is compared with the current best (all, maximal and closed) frequent itemset mining algorithms on benchmark datasets. Different experimental results on sparse and dense datasets show that mining frequent itemset using Ramp is faster than the current best algorithms, which show the effectiveness of our bit-vector projection idea. We also present a new local maximal frequent itemsets propagation and maximal itemset superset checking approach FastLMFI, build upon our PBR bit-vector projection technique. Our different computational experiments suggest that itemset maximality checking using FastLMFI is fast and efficient than a previous will known progressive focusing approach.
منابع مشابه
Ramp: High Performance Frequent Itemset Mining with Efficient Bit-Vector Projection Technique
Mining frequent itemset using bit-vector representation approach is very efficient for small dense datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. We also present a new frequent itemset mining algorithm Ramp (Real Algorithm...
متن کاملFast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support
Real world datasets are sparse, dirty and contain hundreds of items. In such situations, discovering interesting rules (results) using traditional frequent itemset mining approach by specifying a user defined input support threshold is not appropriate. Since without any domain knowledge, setting support threshold small or large can output nothing or a large number of redundant uninteresting res...
متن کاملFast Vertical Mining Using Boolean Algebra
The vertical association rules mining algorithm is an efficient mining method, which makes use of support sets of frequent itemsets to calculate the support of candidate itemsets. It overcomes the disadvantage of scanning database many times like Apriori algorithm. In vertical mining, frequent itemsets can be represented as a set of bit vectors in memory, which enables for fast computation. The...
متن کاملSA-IFIM: Incrementally Mining Frequent Itemsets in Update Distorted Databases
The issue of maintaining privacy in frequent itemset mining has attracted considerable attentions. In most of those works, only distorted data are available which may bring a lot of issues in the datamining process. Especially, in the dynamic update distorted database environment, it is nontrivial to mine frequent itemsets incrementally due to the high counting overhead to recompute support cou...
متن کاملA Fast Algorithm for Mining Utility-Frequent Itemsets
Utility-based data mining is a new research area interested in all types of utility factors in data mining processes and targeted at incorporating utility considerations in both predictive and descriptive data mining tasks. High utility itemset mining is a research area of utilitybased descriptive data mining, aimed at finding itemsets that contribute most to the total utility. A specialized fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0904.3316 شماره
صفحات -
تاریخ انتشار 2006